Enrique Otárola Pastén
Línea de Investigación:
Análisis NuméricoInformación:
- Grado Académico: Ph.D University of Maryland (Estados Unidos)
- Título Profesional: Ingeniero Civil Matemático, Universidad Técnica Federico Santa María
- Campus: San Joaquín
- Horario de consulta: Miércoles de 14:40 a 15:50 hrs (bloque 9-10)
- Email: enrique.otarola@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
62 | T. Mengesha, E. Otárola, A. J. Salgado |
Analysis and approximation of elliptic problems with Uhlenbeck structure in convex polytopes | 2024 | |
61 | F. Bersetche, F. Fuica, E. Otarola, and D. Quero |
Bilinear optimal control for the fractional Laplacian: analysis and discretization. | 2024 | |
60 | A. Allendes, G. Campana, E. Otarola |
Finite Element Discretizations of a Convective Brinkman–Forchheimer Model Under Singular Forcing | 2024 | |
59 | A. Allendes, G. Campana, E. Otarola, and A. J. Salgado |
The linear elasticity system under singular forces | 2024 | |
58 | F. Fuica, F. Lepe, E. Otárola, D. Quero |
An optimal control problem for the stationary Navier-Stokes equations with point sources | Journal of Optimization Theory and Applications, Vol. 196, pp. 590-616 |
2023 |
57 | Enrique Otárola |
Error Estimates for Fractional Semilinear Optimal Control on Lipschitz Polytopes | 2023 | |
56 | A. Allendes, G. Campaña, E. Otárola |
Numerical Discretization of a Darcy-Forchheimer Problem Coupled with a Singular Heat Equation | SIAM Journal on Scientific Computing, 44(5), A2755-A2780, 2023.
|
2023 |
55 | E. Otárola |
Fractional semilinear optimal control: optimality conditions, convergence, and error analysis | 2022 | |
54 | E. Otárola, A. Salgado. |
On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra | 2022 | |
53 | A. Allendes, E. Otárola, F. Fuica |
Error Estimates for a Pointwise Tracking Optimal Control Problem of a Semilinear Elliptic Equation | 2022 | |
52 | F. Fuica, E. Otárola |
A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation | Journal of Optimization Theory and Applications 194, 543–569 (2022). |
2022 |
51 | E. Otárola, C. Glusa |
Error Estimates for the Optimal Control of a Parabolic Fractional PDE | 2021 | |
50 | F. Fuica, F. Lepe, E. Otárola, D. Quero |
A posteriori error estimates in W^{1,p} \times L^p spaces for the Stokes system with Dirac measures | 2021 | |
49 | E. Otárola, F. Lepe, D. Quero |
Error estimates for FEM discretizations of the Navier-Stokes equations with Dirac measures | Journal of Scientific Computing; Vol. 87, Article Number: 97, 2021. |
2021 |
48 | A. Allendes, E. Otárola, F. Fuica, D. Quero. |
A posteriori error estimates for semilinear optimal control problems | ESAIM. Mathematical Modelling and Numerical Analysis, 55, (5), 2293-2322, (2021). |
2021 |
47 | A. Allendes, F. Fuica, E. Otárola, D. Quero |
A Posteriori Error Estimates for a Distributed Optimal Control Problem of the Stationary Navier–Stokes Equations | SIAM Journal on Control and Optimization, 59, (4), 2898-2923, (2021). |
2021 |
46 | A. Allendes, E. Otárola, A. Salgado. |
The stationary Boussinesq problem under singular forcing | Mathematical Models and Methods in Applied Sciences, 31, (4), 789-827, (2021). |
2021 |
45 | F. Fuica, E. Otárola, D. Quero |
Error estimates for optimal control problems involving the Stokes system and Dirac measures | 2021 | |
44 | E. Otárola |
An adaptive finite element method for the sparse optimal control of fractional diffusion | Numerical Methods for Partial Differential Equations, 36(2), 302–328, 2020. |
2020 |
43 | A. Allendes, C. Naranjo, and E. Otárola |
Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis | Computer Methods in Applied Mechanics and Engineering, 361, Article 112703, 2020. |
2020 |
42 | R. G. Durán, E. Otárola, A. J. Salgado |
Stability of the Stokes projection on weighted spaces and applications | 2020 | |
41 | A. Allendes, E. Otárola, A. J. Salgado |
A posteriori error estimates for the stationary Navier–Stokes equations with Dirac measures. | 2020 | |
40 | E. Otárola, A. Salgado |
A weighted setting for the stationary Navier Stokes equations under singular forcing | Applied Mathematics Letters; Vol. 99, article 105933; Jan. 2020. |
2020 |
39 | A. Allendes, F. Fuica, and E. Otarola |
Adaptive finite element methods for sparse PDE-constrained optimization | IMA Journal of Numerical Analysis, Vol 40(3), pp. 2106-2142, July 2020. |
2020 |
38 | E. Otárola, R. Rankin, A. J. Salgado |
Maximum-norm a posteriori error estimates for an optimal control problem | Computational Optimization and Applications; Vol. 73(3), pp. 997 – 1017; Jul. 2019. |
2019 |
37 | L. Banjai, E. Otárola |
A PDE approach to fractional diffusion: a space-fractional wave equation | 2019 | |
36 | L. Banjai, J. Melenk, R. Nochetto, E. Otárola, A. Salgado, C. Schwab |
Tensor FEM for spectral fractional diffusion | Foundations of Computational Mathematics; Vol. 19(4), pp. 901–962; Aug. 2019. |
2019 |
35 | M. D’Elia, C. Glusa, E. Otarola |
A priori error estimates for the optimal control of the integral fractional Laplacian | SIAM Journal on Control and Optimization; Vol. 57(4), pp. 2775–2798; Aug. 2019. |
2019 |
34 | E. Otárola, A. Salgado |
The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing | Journal of Mathematical Analysis and Applications; Vol. 471(1-2), pp. 599-612; Mar. 2019 |
2019 |
33 | A. Allendes, E. Otarola, A. J. Salgado |
A posteriori error estimates for the Stokes problem with singular sources | Computer Methods in Applied Mechanics and Engineering; Vol. 345, pp. 1007 – 1032; Mar. 2019. |
2019 |
32 | E. Otarola, T.N.T Quyen |
A reaction coefficient identification problem for fractional diffusion | 2019 | |
31 | A. Allendes, F. Fuica, E. Otárola, D. Quero
|
An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations | SIAM Journal on Scientific Computing; Vol 41(5), A2967–A2998 |
2019 |
30 | F. Fuica, E. Otarola, A. J. Salgado |
An a posteriori error analysis for an elliptic optimal control problem in measure space | Computers and Mathematics with Applications; Vol. 77(10), pp. 2659 – 2675; May 2019. |
2019 |
29 | A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, A. J. Salgado |
Numerical methods for fractional diffusion | Computing and Visualization in Science; Vol. 19(5-6), pp. 19-46; Dec. 2018. |
2018 |
28 | H. Antil, E. Otárola, A. Salgado |
Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems | IMA Journal of Numerical Analysis, Vol. 38(2), pp. 852–883; May 2018 |
2018 |
27 | A. Allendes, E. Otárola, R. Rankin |
A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations | SIAM Journal on Scientific Computing, Vol. 40(4), pp. A2200–A2233; Jul. 2018 |
2018 |
26 | A. Allendes, E. Otárola, R. Rankin |
A posteriori error estimators for stabilized finite element approximations of an optimal control problem | Computer Methods in Applied Mechanics and Engineering, Vol. 340, pp. 147–177; Oct. 2018 |
2018 |
25 | H. Antil, E. Otárola, A. Salgado |
Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects | Journal of Scientific Computing, Vol. 77(1), pp. 204–224; Oct. 2018 |
2018 |
24 | E. Otárola, H. Antil |
An a posteriori error analysis for an optimal control problem involving the fractional Laplacian | IMA Journal of Numerical Analysis; Vol. 38, pp. 198-226; Jan. 2018 |
2018 |
23 | A. Allendes, E. Otárola, R. Rankin, A. Salgado |
An a posteriori error analysis for an optimal control problem with point sources | ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 52 (5), pp. 1617-1650; Nov. 2018 |
2018 |
22 | A.J. Salgado, E. Otárola |
Sparse Optimal Control for Fractional Diffusion | Computational Methods in Applied Mathematics; Vol. 18(1), pp. 95-110; 2018 |
2018 |
21 | E. Otárola, A.J. Salgado |
Optimization of a Fractional Differential Equation | 2018 | |
20 | E. Otárola, A. J. Salgado |
Regularity of solutions to space–time fractional wave equations: A PDE approach | Fractional Calculus and Applied Analysis, Vol. 21(5), pp. 1262-1293, Oct. 2018. |
2018 |
19 | E. Otárola |
A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains | ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 51(4), pp. 1473-1500; Jul-Aug. 2017 |
2017 |
18 | E. Otárola, A. Allendes, R. Rankin, A.J. Salgado |
Adaptive finite element methods for an optimal control problem involving Dirac measures | 2017 | |
17 | L. Chen, R.H. Nochetto, E. Otárola, A.J. Salgado |
Multilevel methods for nonuniformly elliptic operators and fractional diffusion | Mathematics of Computation; Vol. 85(302), pp. 2583-2607; Nov. 2016 |
2016 |
16 | Alejandro Allendes, Enrique Otarola, Erwin Hernández |
A robust numerical method for a control problem of singularly perturbed equations | 2016 | |
15 | R.H. Nochetto, E. Otárola, A.J. Salgado, |
Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications | 2016 | |
14 | H. Antil, E. Otárola, , A.J. Salgado |
A Space-Time Fractional Optimal Control Problem: Analysis and Discretization | SIAM Journal on Control and Optimization; Vol. 54(3), pp. 1295-1328; 2016 |
2016 |
13 | R.H. Nochetto , E. Otárola, A.J. Salgado |
A PDE Approach to Space-Time Fractional Parabolic Problems | SIAM Journal on Numerical Analysis; Vol. 54(2), pp. 848-873; Mar. 29, 2016 |
2016 |
12 | E. Otárola, A.J. Salgado |
Finite Element Approximation of the Parabolic Fractional Obstacle Problem | SIAM Journal on Numerical Analysis; Vol. 54(4), pp. 2619-2639; 2016. |
2016 |
11 | R.H. Nochetto, E. Otárola, A.J. Salgado |
A PDE approach to fractional diffusion in general domains: a priori error analysis | Foundations of Computational Mathematics, 15(3), 733-791, 2015. |
2015 |
10 | R.H. Nochetto, E. Otárola, A.J. Salgado |
A PDE approach to fractional diffusion: a posteriori error analysis | 2015 | |
9 | R.H. Nochetto, E. Otárola, A.J. Salgado |
Convergence rates for the classical, thin and fractional elliptic obstacle problems | Philosophical Transactions of the Royal Society of London A, 373(2050), 2015. |
2015 |
8 | R.H. Nochetto, E. Otárola, A.J. Salgado |
A PDE approach to numerical fractional diffusion | Proceedings of the International Congress on Industrial and Applied Mathematics, 2015 |
2015 |
7 | H. Antil, E. Otárola |
A Fem for an Optimal Control Problem of Fractional Powers of Elliptic Operators | SIAM Journal on Control and Optimization; Vol. 53(6), pp. 3432-3456; 2015 |
2015 |
6 | D. Kalise, E. Hernández, E. Otárola, |
A locking-free scheme for the LQR control of a Timoshenko beam | Journal of Computational and Applied Mathematics, 235(5), 1383-1393, 2011 |
2011 |
5 | E. Hernández, E. Otárola |
A Superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem, | 2011 | |
4 | E. Hernández, D. Kalise, E. Otárola |
Numerical Approximation of the LQR problem in a strongly damped wave equation | Computational Optimization and Applications, 47(1), 161-178, 2010 |
2010 |
3 | E. Hernández, E. Otárola, R. Rodríguez, F. Sanhueza |
Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry | 2009 | |
2 | E. Hernández, E. Otárola |
A locking-free FEM in active vibration control of a Timoshenko beam | 2009 | |
1 | E. Hernández, E. Otárola, R. Rodríguez and F. Sanhueza |
Finite element approximation of the vibration problem for a timoshenko curved rod | Revista de la Unión Matemática Argentina, 49(1), 15-28, 2008. |
2008 |
Proyectos Vigentes
Programa | Nombre Proyecto | Periodo |
---|---|---|
FONDECYT REGULAR 1220156 | Approximation and control of singular and nonlocal problems | 2022 - 2026 |