Óscar Orellana Estay

Información:

  • Grado Académico: Ph.D New York University (Estados Unidos)
  • Campus: Casa Central
  • Horario de consulta: Lunes, Miércoles y Viernes de 08:15 a 09:20 hrs.
  • Email: oscar.orellana@usm.cl

Publicaciones Recientes

Núm. Autores Artículo Revista Año
20

O. Castillo-Felisola, B. Grez, O. Orellana, J. Perdiguero, F. Ramirez, A. Skirzewski, A. R. Zerwekh

Polynomial Affine Model of Gravity in Three-Dimensions

Universe 8(2), 68 (2022).

2022
19

O. Castillo-Felisola, B. Grez, O. Orellana, J. Perdiguero, F. Ramirez, A. Skirzewski, A. R. Zerwekh

Aspects of the polynomial affine model of gravity in three dimensions

Eur. Phys. J. C 82 (8), (2022).

2022
18

C. Contreras, G. Cvetič, O. Orellana

pQCD running couplings finite and monotonic in the infrared: when do they reflect the holomorphic properties of spacelike observables?

Journal of Physics Communications (JPCO) 5 (1), 1-20 (2021).

2021
17

R. Bustamante, R. Rajagopal, O. Orellana, R.Meneses

Implicit constitutive relations for describing the response of visco-elastic bodies

International Journal of Non-Linear Mechanics Volume 126, November 2020, 103526

2020
16

R. Bustamante, R. Rajagopal, O. Orellana, R.Meneses

Implicit constitutive relations for visco-elastic solids: Part II. Non-homogeneous deformations

International Journal of Non-Linear Mechanics Volume 126, November 2020, 103560

2020
15

O. Castillo-FelisolaJ.PerdigueroO. OrellanaA. R. Zerwekh

Emergent metric and geodesic analysis in cosmological solutions of (torsion-free) polynomial affine gravity

Classical and Quantum GravityVol. 37 (7), March 2020.

2020
14

R. Meneses, O. Orellana

Solving a nonlinear variation of the heat equation: self-similar solutions of the second kind and other results.

J. Evol. Equ. 19 (2019), no. 3, 915–929

2019
13

R. Meneses, O. Orellana, R. Bustamante

A note on the wave equation for a class of constitutive relations for nonlinear elastic bodies that are not Green elastic

Mathematics and Mechanics of Solids; Vol. 23(2), pp. 148-158; Feb. 2018.

2018
12

C. Dib, O. Orellana

Quantum and classical limits in a potential step

European Journal of Physics; Vol. 38(4), art. 045403; July 2017

2017
11

R. Bustamante, O. Orellana, R. Meneses, K.R. Rajagopal

Large deformations of a new class of incompressible elastic bodies

Zeitschrift für angewandte Mathematik und Physik; Vol. 67, art. 47; Jun. 2016.

2016
10

O. Orellana, R. Durán

Sobre el realismo Matemático de Zubiri y su Interpretación de los Teoremas de Gödel y Cohen

ARBOR Ciencia, Pensamiento y Cultura; Vol. 192(780), art. A333; Jul.-Aug. 2016.

2016
9

R. Meneses, O. Orellana

On a Sturm-Liouville problem with spectral and physical parameters in boundary conditions

IMA Journal of Applied Mathematics; Vol. 81(1), pp. 100-131; Feb. 2016.

2016
8

F. Ternat, P. Daripa, O. Orellana

On an inverse problem: recovery of non-smooth solutions to backward heat equation

Appl. Math. Model. 36 (2012), no. 9, 4003–4019

2012
7

F. Ternat, O. Orellana, P. Daripa

Two stable methods with numerical experiments for solving the backward heat equation

Appl. Numer. Math. 61 (2011), no. 2, 266–284

2011
6

D. Papageorgiou, O. Orellana

Study of cylindrical jet breakup using one-dimensional approximations of the Euler equations

SIAM J. Appl. Math. 59 (1999), no. 1, 286–317.

1999
5

O. Orellana

A non-linear theory for the evolution of source or sink curves

Sci. Ser. A Math. Sci. (N.S.) 5 (1992/93), 87–99 (1995).

1995
4

R.E. Caflisch, O. Orellana, M. Siegel

A localized approximation method for vortical flows

SIAM J. Appl. Math. 50 (1990), no. 6, 1517–1532.

1990
3

O. Orellana

On some analytic and computational aspects of two-dimensional vortex sheet evolution.

Computational methods and function theory (Valparaíso, 1989), 143–154, Lecture Notes in Math., 1435, Springer, Berlin, 1990

1990
2

R. Caflisch, O. Orellana

Singular solutions and ill-posedness for the evolution of vortex sheets

SIAM J. Math. Anal. 20 (1989), no. 2, 293–307.

1989
1

R. Caflisch, O. Orellana

Long time existence for a slightly perturbed vortex sheet

Comm. Pure Appl. Math. 39 (1986), no. 6, 807–838.

1986