Alejandro Allendes Flores
Encargado de Laboratorios
Línea de Investigación:
Análisis NuméricoInformación:
- Grado Académico: Ph.D University of Strathclyde (Escocia)
- Título Profesional: Ingeniero Civil Matemático, Universidad Técnica Federico Santa María
- Campus: Casa Central
- Horario de consulta: Lunes de 09:40 a 10:50 hrs.
- Email: alejandro.allendes@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
27 | A. Allendes, G. Campana, E. Otarola |
Finite Element Discretizations of a Convective Brinkman–Forchheimer Model Under Singular Forcing | 2024 | |
26 | A. Allendes, G. Campana, E. Otarola, and A. J. Salgado |
The linear elasticity system under singular forces | 2024 | |
25 | A. Allendes, G. Campaña, E. Otárola |
Numerical Discretization of a Darcy-Forchheimer Problem Coupled with a Singular Heat Equation | SIAM Journal on Scientific Computing, 44(5), A2755-A2780, 2023.
|
2023 |
24 | A. Allendes, E. Otárola, F. Fuica |
Error Estimates for a Pointwise Tracking Optimal Control Problem of a Semilinear Elliptic Equation | 2022 | |
23 | A. Allendes, G. Barrenechea, J. Novo. |
A Divergence-Free Stabilized Finite Element Method for the Evolutionary Navier–Stokes Equations | SIAM Journal on Scientific Computing, 43, (6), A3809-A3836, (2021). |
2021 |
22 | A. Allendes, E. Otárola, F. Fuica, D. Quero. |
A posteriori error estimates for semilinear optimal control problems | ESAIM. Mathematical Modelling and Numerical Analysis, 55, (5), 2293-2322, (2021). |
2021 |
21 | A. Allendes, F. Fuica, E. Otárola, D. Quero |
A Posteriori Error Estimates for a Distributed Optimal Control Problem of the Stationary Navier–Stokes Equations | SIAM Journal on Control and Optimization, 59, (4), 2898-2923, (2021). |
2021 |
20 | A. Allendes, E. Otárola, A. Salgado. |
The stationary Boussinesq problem under singular forcing | Mathematical Models and Methods in Applied Sciences, 31, (4), 789-827, (2021). |
2021 |
19 | A. Allendes, C. Naranjo, and E. Otárola |
Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis | Computer Methods in Applied Mechanics and Engineering, 361, Article 112703, 2020. |
2020 |
18 | A. Allendes, E. Otárola, A. J. Salgado |
A posteriori error estimates for the stationary Navier–Stokes equations with Dirac measures. | 2020 | |
17 | A. Allendes, F. Fuica, and E. Otarola |
Adaptive finite element methods for sparse PDE-constrained optimization | IMA Journal of Numerical Analysis, Vol 40(3), pp. 2106-2142, July 2020. |
2020 |
16 | A. Allendes, E. Otarola, A. J. Salgado |
A posteriori error estimates for the Stokes problem with singular sources | Computer Methods in Applied Mechanics and Engineering; Vol. 345, pp. 1007 – 1032; Mar. 2019. |
2019 |
15 | Alejandro Allendes, Gilberto Campaña, Erwin Hernández |
Pointwise error estimations for a generalized Oseen problem and its application to an optimal control problem | Mathematical Methods in the Applied Sciences, 42, no. 10, 3549-3567, 2019 |
2019 |
14 | A. Allendes, F. Fuica, E. Otárola, D. Quero
|
An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations | SIAM Journal on Scientific Computing; Vol 41(5), A2967–A2998 |
2019 |
13 | A. Allendes, C. Naranjo, G. Barrenechea |
A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem | Computer Methods in Applied Mechanics and Engineering, Vol. 340, pp. 90-120, Oct. 2018. |
2018 |
12 | A. Allendes, E. Otárola, R. Rankin |
A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations | SIAM Journal on Scientific Computing, Vol. 40(4), pp. A2200–A2233; Jul. 2018 |
2018 |
11 | A. Allendes, E. Otárola, R. Rankin |
A posteriori error estimators for stabilized finite element approximations of an optimal control problem | Computer Methods in Applied Mechanics and Engineering, Vol. 340, pp. 147–177; Oct. 2018 |
2018 |
10 | A. Allendes, E. Otárola, R. Rankin, A. Salgado |
An a posteriori error analysis for an optimal control problem with point sources | ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 52 (5), pp. 1617-1650; Nov. 2018 |
2018 |
9 | E. Otárola, A. Allendes, R. Rankin, A.J. Salgado |
Adaptive finite element methods for an optimal control problem involving Dirac measures | 2017 | |
8 | A. Allendes, G. Barrenechea, R. Rankin |
Fully Computable Error Estimation of a Nonlinear, Positivity-Preserving Discretization of the Convection-Diffusion-Reaction Equation | SIAM Journal on Scientific Computing; Vol. 39(5), pp. A1903-A1927; Sep. 12, 2017 |
2017 |
7 | A. Allendes, F. Durán, R. Rankin |
Error estimation for low-order adaptive finite element approximations for fluid flow problems | IMA Journal of Numerical Analysis; Vol. 36(4), pp. 1715-1747; Oct. 2016 |
2016 |
6 | Alejandro Allendes, Enrique Otarola, Erwin Hernández |
A robust numerical method for a control problem of singularly perturbed equations | 2016 | |
5 | Mark Ainsworth, Alejandro Allendes, Gabriel R. Barrenechea, Richard Rankin |
On the adaptive selection of the parameter in stabilized finite element approximations | SIAM Journal on Numerical Analysis, Vol. 51, No. 3, pp: 1585–1609, 2013 |
2013 |
4 | Mark Ainsworth, Alejandro Allendes, Gabriel R. Barrenechea, Richard Rankin |
Fully computable a posteriori error bounds for stabilized FEM approximations of convection-reactiondiffusion problems in three dimensions | International Journal for Numerical Methods in Fluids, Vol. 73, No. 9, pp:765–790, 2013. |
2013 |
3 | Mark Ainsworth, Alejandro Allendes, Gabriel R. Barrenechea, Richard Rankin |
Computable error bounds for nonconforming Fortin–Soulie finite element approximation of the Stokes problem | IMA Journal of Numerical Analysis, Vol. 32, No. 2, pp: 417–447, 2012. |
2012 |
2 | Alejandro Allendes, Alexander Quaas |
Multiplicity results for extremal operators trough bifurcation | Discrete and Continuous Dynamical Systems – Series A, Vol. 29, No. 1, pp: 51–65, 2011 |
2011 |
1 | Alejandro Allendes, Gabriel R. Barrenechea, Erwin Hernández and Frédéric Valentin |
A two-level enriched finite element method for a mixed problem | Mathematics of Computation, Vol. 80, No. 273, pp: 11–41, 2011. |
2011 |
Proyectos Vigentes
Programa | Nombre Proyecto | Periodo |
---|---|---|
FONDECYT REGULAR 1210729 | Adaptive finite element methods for linear and nonlinear PDEs under Dirac measures | 2021 - 2025 |