Michael Karkulik
Jefe de Carrera Ingeniería Civil Matemática Casa Central
Línea de Investigación:
Análisis NuméricoInformación:
- Grado Académico: Ph.D Technischen Universität Wien (Austria)
- Campus: Casa Central
- Horario de consulta: Martes de 09:40 a 10:50 hrs.
- Email: michael.karkulik@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
32 | M. Karkulik, T. Führer. |
Space–time least-squares finite elements for parabolic equations | Computers & Mathematics with Applications. An International Journal, 92, 27-36, (2021). |
2021 |
31 | T. Führer, N. Heuer, M. Karkulik |
Analysis of Backward Euler Primal DPG Methods | Computational Methods in Applied Mathematics 21 (4), 811-826 (2021). |
2021 |
30 | M. Karkulik |
A Finite Element Method for Elliptic Dirichlet Boundary Control Problems | Computational Methods in Applied Mathematics 20 (4), 827 -843 (2020). |
2020 |
29 | M. Karkulik, J.M. Melenk, A. Rieder |
Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D | ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 54 (1), pp. 145-180; Jan 2020. |
2020 |
28 | M. Karkulik, J.M. Melenk |
H -matrix approximability of inverses of discretizations of the fractional Laplacian | Advances in Computational Mathematics; Vol. 45, pp 2893–2919; Nov. 2019. |
2019 |
27 | T. Führer, M. Karkulik |
New a priori analysis of first-order system least-squares finite element methods for parabolic problems | Numer. Methods Partial Differential Equations 35 (2019), no. 5, 1777–1800 |
2019 |
26 | N. Heuer, T. Fuehrer, M. Karkulik, R. Rodríguez |
Combining the DPG Method with Finite Elements | Computational Methods in Applied Mathematics; Vol. 18 (4), pp. 639-652; Oct. 2018. |
2018 |
25 | M. Karkulik |
Variational formulation of time-fractional parabolic equations | Computers & Mathematics with Applications, Vol. 75(11), pp. 3929-3938, Jun. 2018. |
2018 |
24 | N. Heuer, M. Karkulik |
A Robust DPG Method for Singularly Perturbed Reaction-Diffusion Problems | SIAM Journal on Numerical Analysis; Vol. 55(3), pp. 1218-1242; May 23, 2017 |
2017 |
23 | N. Heuer, M. Karkulik |
Discontinuous Petrov-Galerkin boundary elements | Numerische Mathematik; Vol. 135(4), pp. 1011-1043; Apr. 2017 |
2017 |
22 | M. Karkulik, V.J. Ervin, T. Führer, N. Heuer |
DPG Method with Optimal Test Functions for a Fractional Advection Diffusion Equation | Journal of Scientific Computing; Vol. 72(2), pp. 568-585; Aug. 2017 |
2017 |
21 | M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius |
Local Inverse Estimates for Non-local Boundary Integral Operators | Mathematics of Computation; Vol. 86(308), pp. 2651-2686; Nov. 2017 |
2017 |
20 | T. Führer, N. Heuer, M. Karkulik |
On the coupling of DPG and BEM | 2017 | |
19 | M. Karkulik, D. Pavlicek, D. Praetorius |
Erratum to: On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection | 2015 | |
18 | M. Karkulik, J.M. Melenk |
Local high-order regularization and applications to hp-methods | 2015 | |
17 | M. Heuer, M. Karkulik |
DPG method with optimal test functions for a transmission problem | 2015 | |
16 | N. Heuer, M. Karkulik |
Adaptive Crouzeix-Raviart boundary element method | 2015 | |
15 | M. Feischl, T. Führer, N. Heuer, M. Karkulik, D. Praetorius |
Adaptive boundary element methods | 2015 | |
14 | M. Aurada, M. Feischl, T Führer, M. Karkulik, D. Praetorius |
Energy norm based error estimators for adaptive BEM for hypersingular integral equations | 2015 | |
13 | M. Feischl, T. Führer, M. Karkulik, D. Praetorius |
Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems | 2015 | |
12 | M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation | 2015 | |
11 | M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius |
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation | 2015 | |
10 | M. Feischl, T. Führer, M. Karkulik, D. Praetorius |
ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve | 2014 | |
9 | N. Heuer, M. Karkulik, F. Sayas |
Note on discontinuous trace approximation in the practical DPG method | 2014 | |
8 | M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits, M. Karkulik, M. Markus, D. Praetorius |
HILBERT—a MATLAB implementation of adaptive 2D-BEM | 2014 | |
7 | M. Karkulik, G. Of, D. Praetorius |
Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement | Numer. Methods Partial Differential Equations 29 (2013), no. 6, 2081–2106 |
2013 |
6 | M. Karkulik, D. Pavlicek, D. Praetorius |
On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection | 2013 | |
5 | M. Aurada, M. Feischl, T. Führer, M. Karkulik, D. Praetorius |
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods | 2013 | |
4 | M. Feischl, M. Karkulik, J.M. Melenk, D. Praetorius |
Quasi-optimal convergence rate for an adaptive boundary element method | 2013 | |
3 | M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M Melenk, D. Praetorius |
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity | 2013 | |
2 | M. Aurada, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr, D. Praetorius, |
Convergence of adaptive BEM for some mixed boundary value problem | 2012 | |
1 | M. Aurada, M. Feischl, M. Karkulik, D. Praetorius |
A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling | 2012 |