Patricio Guzmán Meléndez
Línea de Investigación:
Control de Ecuaciones Diferenciales Parciales y Problemas InversosInformación:
- Grado Académico: Ph.D Universidad Técnica Federico Santa María
- Título Profesional: Ingeniero Civil Matemático, Universidad Técnica Federico Santa María
- Campus: Casa Central
- Email: patricio.guzmanm@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
9 | P. Guzman, L. Rosier. |
Null Controllability of the Structurally Damped Wave Equation on the Two-Dimensional Torus | SIAM Journal on Control and Optimization, 59, (1), 131-155, (2021). |
2021 |
8 | P. Guzmán |
Boundary stabilization of a microbeam model | Mathematical Methods in the Applied Sciences; Vol. 43(9), 5979-5984. |
2020 |
7 | P. Guzmán |
Local exact controllability to the trajectories of the Cahn-Hilliard equation. | 2020 | |
6 | P. Guzman, M. Swann, E. Cerpa. |
Feedback Stabilization of a 1-D Linear Reaction–Diffusion Equation With Delay Boundary Control | IEEE Transactions on Automatic Control, 64 (4), 1415-1425 (2019). |
2019 |
5 | P. Guzmán |
Energy decay of a microbeam model with a locally distributed nonlinear feedback control | 2018 | |
4 | E. Cerpa, P. Guzmán, A. Mercado |
On the control of the linear Kuramoto-Sivashinsky equation | ESAIM: Control, Optimisation and Calculus of Variations; Vol. 23(1), pp. 165-194. |
2017 |
3 | N. Carreño, P. Guzmán |
On the cost of null controllability of a fourth-order parabolic equation | Journal of Differential Equations; Vol. 261(11), pp. 6485-6520. |
2016 |
2 | P. Guzmán, J. Zhu |
Exact boundary controllability of a microbeam model | 2015 | |
1 | P. Guzmán |
Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto-Sivashinsky type equation | 2013 |