FICHA DE CURSO PROGRAMA DOCTORADO EN MATEMATICA

Nombre del curso	Sistemas Dinámicos y Problemas Variacionales
Descripción del curso	En esta asignatura el estudiante conocerá los principales sistemas dinámicos utilizados para encontrar soluciones a problemas variacionales definidos mediante operadores monótonos. Aprenderá las técnicas que permiten deducir propiedades globales y asintóticas de los sistemas, y las aplicará para analizar sistemas concretos.
Objetivos	
	Objetivo general:
	Conocer los conceptos básicos de los sistemas dinámicos y aplicarlos al estudio de problemas variacionales.
	Objetivos específicos:
	El estudiante al final del curso deberá:
	 Comprender y utilizar los conceptos relacionados con operadores monótonos; Deducir propiedades globales y asintóticas de sistemas dinámicos continuos y discretos; Aplicar el enfoque dinámico para encontrar soluciones de problemas variacionales.
Contenidos	
	Operadores monótonos: definiciones, ejemplos y propiedades. Maximalidad y Teorema de Minty.
	 Inclusión diferencial gobernada por un operador monótono: existencia, unicidad y otras propiedades de las soluciones. Semigrupo generado. Ejemplos y aplicaciones a problemas variacionales.
	3. Otros sistemas continuos para problemas variacionales: método del gradiente generalizado, de Newton, oscilador no-lineal.
	4. Sistemas discretos. Método proximal. Algoritmos de tipo gradiente: dirección de máximo descenso y de Newton.
	5. Opcional: Relación continuo-discreto. Pseudotrayectorias asintóticas y aproximaciones estocásticas. Casi-órbitas. Ejemplos y aplicaciones.
Metodología	Clases expositivas. Estudio independiente y exposiciones de estudiantes acerca de temas específicos.

Evaluación	
	Se realizarán al menos dos certámenes que en conjunto valdrán al menos el 60% de la nota final.
	La evaluación se complementará con tareas, talleres y exposiciones, a criterio del profesor.
	Los alumnos con nota final entre 45 y 69 (en escala de 1 a 100) podrán rendir un examen, cuya ponderación quedará a criterio del profesor.
Bibliografía	1. J Peypouquet, S Sorin, Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. <i>J. Convex Anal.</i> 17 (2010), no. 3-4, 1113–1163.
	2. H Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London, 1973.
	3. H Bauschke, P Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York, 2011.
	4. A Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
	5. D Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
	6. V Barbu, Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Leiden, 1976.