Michael Karkulik

Jefe de Carrera Ingeniería Civil Matemática Casa Central

Línea de Investigación:

Análisis Numérico

Información:

  • Grado Académico: Ph.D Technischen Universität Wien (Austria)
  • Campus: Casa Central
  • Oficina: F-248
  • Email: michael.karkulik@usm.cl
  • Teléfono: (56) (32) 265 4497
  • Sitio Web

Publicaciones Recientes

Núm. Autores Artículo Revista Año
27

T. Führer, M. Karkulik

New a priori analysis of first-order system least-squares finite element methods for parabolic problems

Numer. Methods Partial Differential Equations 35 (2019), no. 5, 1777–1800

2019
26

N. Heuer, T. Fuehrer, M. Karkulik, R. Rodríguez

Combining the DPG Method with Finite Elements

Computational Methods in Applied Mathematics; Vol. 18 (4), pp. 639-652; Oct. 2018.

2018
25

M. Karkulik

Variational formulation of time-fractional parabolic equations

Computers & Mathematics with Applications, Vol. 75(11), pp. 3929-3938, Jun. 2018.

2018
24

N. Heuer, M. Karkulik

A Robust DPG Method for Singularly Perturbed Reaction-Diffusion Problems

SIAM Journal on Numerical Analysis; Vol. 55(3), pp. 1218-1242; May 23, 2017

2017
23

N. Heuer, M. Karkulik

Discontinuous Petrov-Galerkin boundary elements

Numerische Mathematik; Vol. 135(4), pp. 1011-1043; Apr. 2017

2017
22

M. Karkulik, V.J. Ervin, T. Führer, N. Heuer

DPG Method with Optimal Test Functions for a Fractional Advection Diffusion Equation

Journal of Scientific Computing; Vol. 72(2), pp. 568-585; Aug. 2017

2017
21

M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius

Local Inverse Estimates for Non-local Boundary Integral Operators

Mathematics of Computation; Vol. 86(308), pp. 2651-2686; Nov. 2017

2017
20

T. Führer, N. Heuer, M. Karkulik

On the coupling of DPG and BEM

Math. Comp. 86 (2017), no. 307, 2261–2284

2017
19

N. Heuer, M. Karkulik

Adaptive Crouzeix-Raviart boundary element method

ESAIM Math. Model. Numer. Anal. 49 (2015), no. 4, 1193–1217

2015
18

M. Feischl, T. Führer, N. Heuer, M. Karkulik, D. Praetorius

Adaptive boundary element methods

Arch. Comput. Methods Eng. 22 (2015), no. 3, 309–389

2015
17

M. Aurada, M. Feischl, T Führer, M. Karkulik, D. Praetorius

Energy norm based error estimators for adaptive BEM for hypersingular integral equations

Appl. Numer. Math. 95 (2015), 15–35

2015
16

M. Feischl, T. Führer, M. Karkulik, D. Praetorius

Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems

Numer. Math. 130 (2015), no. 2, 199–223

2015
15

M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation

Electron. Trans. Numer. Anal. 44 (2015), 153–176.

2015
14

M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, D. Praetorius

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation

Calcolo 51 (2014), no. 4, 531–562

2015
13

M. Karkulik, D. Pavlicek, D. Praetorius

Erratum to: On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection

Constr. Approx. 42 (2015), no. 3, 349–352.

2015
12

M. Karkulik, J.M. Melenk

Local high-order regularization and applications to hp-methods

Comput. Math. Appl. 70 (2015), no. 7, 1606–1639

2015
11

M. Heuer, M. Karkulik

DPG method with optimal test functions for a transmission problem

Comput. Math. Appl. 70 (2015), no. 5, 1070–1081

2015
10

N. Heuer, M. Karkulik, F. Sayas

Note on discontinuous trace approximation in the practical DPG method

Comput. Math. Appl. 68 (2014), no. 11, 1562–1568

2014
9

M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits,  M. Karkulik, M. Markus, D. Praetorius

HILBERT—a MATLAB implementation of adaptive 2D-BEM

Numer. Algorithms 67 (2014), no. 1, 1–32

2014
8

M. Feischl, T. Führer, M. Karkulik, D. Praetorius

ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve

Eng. Anal. Bound. Elem. 38 (2014), 49–60

2014
7

M. Karkulik, D. Pavlicek, D. Praetorius

On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection

Constr. Approx. 38 (2013), no. 2, 213–234

2013
6

M. Aurada, M. Feischl, T. Führer, M. Karkulik, D. Praetorius

Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods

Comput. Methods Appl. Math. 13 (2013), no. 3, 305–332

2013
5

M. Feischl, M. Karkulik, J.M. Melenk, D. Praetorius

Quasi-optimal convergence rate for an adaptive boundary element method

SIAM J. Numer. Anal. 51 (2013), no. 2, 1327–1348

2013
4

M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M Melenk, D. Praetorius

Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity

Comput. Mech. 51 (2013), no. 4, 399–419

2013
3

M. Karkulik, G. Of, D. Praetorius

Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement

Numer. Methods Partial Differential Equations 29 (2013), no. 6, 2081–2106

2013
2

M. Aurada, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr, D. Praetorius,

Convergence of adaptive BEM for some mixed boundary value problem

Appl. Numer. Math. 62 (2012), no. 4, 226–245

2012
1

M. Aurada, M. Feischl, M. Karkulik, D. Praetorius

A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling

Eng. Anal. Bound. Elem. 36 (2012), no. 2, 255–266

2012

Proyectos Vigentes

Programa Nombre Proyecto Periodo
FONDECYT REGULAR 1170672 Fast Space-Time Discretizations for Fractional Evolution Equations 2017 - 2021