Leonelo Iturriaga Pastene
Delegado de Dirección Campus Santiago
Encargado de Vinculación con el Medio Campus Santiago
Línea de Investigación:
Análisis No-Lineal y de Ecuaciones Diferenciales ParcialesInformación:
- Grado Académico: Ph.D Universidad de Chile
- Campus: San Joaquín
- Horario de consulta: Lunes de 14:40 a 15:50 hrs. (bloque 9-10)
- Email: leonelo.iturriaga@usm.cl
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
28 | L. Iturriaga, E. Massa |
Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems | 2020 | |
27 | P. Cerda, L. Iturriaga |
Existence of solution for quasilinear equations involving local conditions | Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 6, 3074–3086. |
2020 |
26 | J. García-Melián, L. Iturriaga, A. Quaas |
Liouville theorems for radial solutions of semilinear elliptic equations | Complex Variables and Elliptic Equations; Vol 64(6), pp. 933-949; 2019. |
2019 |
25 | I. Flores, M. Franca, L. Iturriaga |
Positive radial solutions involving nonlinearities with zeros | 2019 | |
24 | L. Iturriaga, E. Massa |
Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros | Discrete and Continuous Dynamical Systems – A; Vol. 38(8), pp 3831–3850, Oct 2018 |
2018 |
23 | P. Cerda, L. Iturriaga, S. Lorca, P. Ubilla |
Positive radial solutions of a nonlinear boundary value problem | Communications on Pure and Applied Analysis; Vol. 17(5), pp 1765–1783, Sep. 2018 |
2018 |
22 | L. Iturriaga, E. Massa |
On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation | Journal of Mathematical Physics; Vol. 59(1), art. 011506; Jan. 24, 2018 |
2018 |
21 | L. Iturriaga, S. Lorca, E. Massa |
Multiple Positive Solutions for the M-Laplacian and a Nonlinearity with Many Zeros | Differential and Integral Equations; Vol. 30(1-2), pp. 145-159; Jan-Feb. 2017 |
2017 |
20 | B. Barrios, J. García-Melián, L. Iturriaga |
Semilinear elliptic equations and nonlinearities with zeros | 2016 | |
19 | J. García-Melián, L. Iturriaga |
Some counterexamples related to the stationary Kirchhoff equation | Proceedings of the American Mathematical Society; Vol. 144(8), pp. 3405-3411; Aug. 2016 |
2016 |
18 | J. García-Melián, L. Iturriaga, H. Ramos |
A Priori Bounds and Existence of Solutions for Slightly Superlinear Elliptic Problems | 2015 | |
17 | E. Moreira dos Santos, L. Iturriaga, P. Ubilla |
Local minimizers in spaces of symmetric functions and applications | Journal of Mathematical Analysis and Applications; Vol. 429(1), pp. 27-56; Sept. 1, 2015 |
2015 |
16 | J. García, L. Iturriaga |
Multiplicity of Solutions for some Semilinear Problems Involving Nonlinearities with Zeros | Israel Journal of Mathematics; Vol. 210(1), pp. 233-244; Sept. 2015 |
2015 |
15 | L. Iturriaga, E. Massa, J. Sánchez, P. Ubilla |
Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros | Mathematische Nachrichten; Vol. 287(10), pp. 1131-1141; 2014 |
2014 |
14 | L. Iturriaga, M. Souto, P. Ubilla |
Quasilinear Problems Involving Changing-Sign Nonlinearities without an Ambrosetti-Rabimowitz-Type Condition | Proceedings of the Edinburgh Mathematical Society (Series 2); Vol. 57(3), pp. 755-762; October 2014 |
2014 |
13 | S. Alarcón, L. Iturriaga, A. Quaas |
Existence and multiplicity results for Pucci’s operators involving nonlinearities with zeros | 2012 | |
12 | L. Iturriaga, S. Lorca, E. Saavedra, P. Ubilla |
Quasilinear equations involving nonlinear Neumann boundary conditions | Differential Integral Equations 25 (2012), no. 7-8, 657–664 |
2012 |
11 | L. Iturriaga, S. Lorca, E. Massa |
Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros | Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 763–771 |
2010 |
10 | L. Iturriaga, S. Lorca, E. Massa |
Existence of solutions to quasilinear elliptic equations with singular weights | 2010 | |
9 | L. Iturriaga, E. Massa, J. Sánchez, P. Ubilla |
Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros | 2010 | |
8 | L. Iturriaga, S. Lorca, P. Ubilla |
A quasilinear problem without the Ambrosetti-Rabinowitz-type condition | Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 2, 391–398. |
2010 |
7 | L. Iturriaga, J. Sánchez |
Exact number of solutions of stationary reaction-diffusion equations | 2010 | |
6 | L. Iturriaga, S. Lorca, J. Sánchez |
Existence and multiplicity results for the p-Laplacian with a p-gradient term | NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 6, 729–743 |
2008 |
5 | F. Brock, L. Iturriaga, P. Ubilla |
A multiplicity result for the p-Laplacian involving a parameter | 2008 | |
4 | L. Iturriaga |
Existence and multiplicity results for some quasilinear elliptic equation with weights | 2008 | |
3 | L. Iturriaga, S. Lorca |
Existence and multiplicity results for degenerate elliptic equations with dependence on the gradient | Bound. Value Probl. 2007, Art. ID 47218, 12 pp |
2007 |
2 | F. Brock, L. Iturriaga, J. Sánchez, P. Ubilla |
Existence of positive solutions for p-Laplacian problems with weights | 2006 | |
1 | F. Brock, L. Iturriaga, P. Ubilla |
Semi-linear singular elliptic equations with dependence on the gradient | 2006 |