Erwin Hernández Hernández
Línea de Investigación:
Análisis NuméricoInformación:
- Grado Académico: Ph.D Universidad de Concepción
- Título Profesional: Ingeniero Matemático, Universidad de Concepción
- Campus: San Joaquín
- Horario de consulta: Jueves de 9:40 a 10:50 hrs (bloque 3-4) en F-551 4to Piso Edificio F
- Email: erwin.hernandez@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
29 | E. Hernández, J. Vellojin. |
A locking-free finite element formulation for a non-uniform linear viscoelastic Timoshenko beam | Computers \& Mathematics with Applications. An International Journal, 99, 305-322, (2021). |
2021 |
28 | E.Hernandez, C.Naranjo, J.Vellojin |
Modelling of thin viscoelastic shell structures under Reissner–Mindlin kinematic assumption | Applied Mathematical Modeling; Vol. 79, pp. 180-199; Mar 2020. |
2020 |
27 | Alejandro Allendes, Gilberto Campaña, Erwin Hernández |
Pointwise error estimations for a generalized Oseen problem and its application to an optimal control problem | Mathematical Methods in the Applied Sciences, 42, no. 10, 3549-3567, 2019 |
2019 |
26 | E. Hernández, C. Spa, and S. Surriba |
A non-standard MITC4 method for dynamical behaviour of cylindrical thin shells | 2018 | |
25 | E. Hernández, C. Domínguez, R. Prato |
Local active control for an exterior fluid-structure interaction problem | 2017 | |
24 | D. Kalise, P. Braun, E. Hernández |
Reduced-order LQG control of a Timoshenko beam model | Bulletin of the Brazilian Mathematical Society; Vol. 47(1), pp. 143-155; Mar. 2016 |
2016 |
23 | Alejandro Allendes, Enrique Otarola, Erwin Hernández |
A robust numerical method for a control problem of singularly perturbed equations | 2016 | |
22 | E. Hernández, M. Cascón, A. Engdahl, L. Ferragut |
A reduced basis for a local high definition wind model | Computer Methods in Applied Mechanics and Engineering; Vol. 311, pp. 438-456; Nov. 2016 |
2016 |
21 | E. Hernández, C. Spa, S. van Caloen |
A finite element approximations of a structural acoustic control problem with a Timoshenko beam interface | Journal of Mathematical Analysis and Applications; Vol. 424, pp. 1125-1142; 2015 |
2015 |
20 | C. Spa, A. Rey, E. Hernández |
A GPU Implementation of an Explicit Compact FDTD Algorithm with a Digital Impedance Filter for Room Acoustics Applications | 2015 | |
19 | C. Spa, P. Reche, E. Hernández |
Numerical Absorbing Boundary Conditions Based on a Damped Wave Equation for Pseudospectral Time-Domain Acoustic Simulations | Scientific World Journal; Vol. 2014, Art. ID 285945(9); 2014 |
2014 |
18 | E. Hernández, D. Santamarina. |
Active control of sloshing in containers with elastic baffle plates | Internat. J. Numer. Methods Engrg. 91 (2012), no. 6, 604–621 |
2012 |
17 | Barrios, Tomás P.; Bustinza, Rommel; García, Galina C.; Hernández, Erwin |
On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: a priori error estimates | 2012 | |
16 | D. Kalise, E. Hernández, E. Otárola, |
A locking-free scheme for the LQR control of a Timoshenko beam | Journal of Computational and Applied Mathematics, 235(5), 1383-1393, 2011 |
2011 |
15 | E. Hernández, E. Otárola |
A Superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem, | 2011 | |
14 | Alejandro Allendes, Gabriel R. Barrenechea, Erwin Hernández and Frédéric Valentin |
A two-level enriched finite element method for a mixed problem | Mathematics of Computation, Vol. 80, No. 273, pp: 11–41, 2011. |
2011 |
13 | P. Gamallo, E. Hernández, A. Peters |
On the error estimates for the finite element approximation of a class of boundary optimal control systems | 2011 | |
12 | E. Hernández, D. Kalise, E. Otárola |
Numerical Approximation of the LQR problem in a strongly damped wave equation | Computational Optimization and Applications, 47(1), 161-178, 2010 |
2010 |
11 | P. Gamallo, E. Hernández |
Error estimates for the approximation of a class of optimal control systems governed by linear PDEs | 2009 | |
10 | E. Hernández, L. Hervella-Nieto |
Finite element approximation of free vibration of folded plates | Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 15-16, 1360–1367 |
2009 |
9 | E. Hernández |
Finite element approximation of the elasticity spectral problem on curved domains | 2009 | |
8 | E. Hernández, E. Otárola, R. Rodríguez, F. Sanhueza |
Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry | 2009 | |
7 | E. Hernández, E. Otárola |
A locking-free FEM in active vibration control of a Timoshenko beam | 2009 | |
6 | E. Hernández, E. Otárola, R. Rodríguez and F. Sanhueza |
Finite element approximation of the vibration problem for a timoshenko curved rod | Revista de la Unión Matemática Argentina, 49(1), 15-28, 2008. |
2008 |
5 | E. Hernández |
Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements | 2004 | |
4 | E. Hernández, R. Rodríguez |
Finite element approximation of spectral acoustic problems on curved domains | 2004 | |
3 | R. Durán, E. Hernández, L. Hervella-Nieto, E. Liberman, R. Rodríguez, |
Error estimates for low-order isoparametric quadrilateral finite elements for plates | 2003 | |
2 | E. Hernández, R. Rodríguez |
Finite element approximation of spectral problems with Neumann boundary conditions on curved domains | 2003 | |
1 | Gatica, G. N.; Hernandez, E. C.; Mellado, M. E |
A domain decomposition method for linear exterior boundary value problems | 1998 |