Enrique Otárola Pastén

Delegado de Dirección Campus Santiago

Línea de Investigación:

Análisis Numérico

Información:

  • Grado Académico: Ph.D University of Maryland (Estados Unidos)
  • Título Profesional: Ingeniero Civil Matemático, Universidad Técnica Federico Santa María
  • Campus: Campus San Joaquín
  • Oficina: A-025
  • Email: enrique.otarola@usm.cl
  • Teléfono: (56) (2) 23037339
  • Sitio Web

Publicaciones Recientes

Núm. Autores Artículo Revista Año
43

E. Otárola, A. Salgado

A weighted setting for the stationary Navier Stokes equations under singular forcing

Applied Mathematics Letters; Vol. 99, article 105933; Jan. 2020. 

2020
42

E. Otárola

An adaptive finite element method for the sparse optimal control of fractional diffusion

Numerical  Methods for Partial Differential Equations, 36(2), 302–328, 2020.

2020
41

A. Allendes, C. Naranjo, and E. Otárola

Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis

Computer Methods in Applied Mechanics and Engineering, 361, Article 112703, 2020.

2020
40

L. Banjai, E. Otárola

A PDE approach to fractional diffusion: a space-fractional wave equation

Numerische Mathematik; Vol. 143(1), pp. 177–222; Sep. 2019.

2019
39

L. Banjai, J. Melenk, R. Nochetto, E. Otárola, A. Salgado, C. Schwab

Tensor FEM for spectral fractional diffusion

Foundations of Computational Mathematics; Vol. 19(4), pp. 901–962; Aug. 2019.

2019
38

M. D’Elia, C. Glusa, E. Otarola

A priori error estimates for the optimal control of the integral fractional Laplacian

SIAM Journal on Control and Optimization; Vol. 57(4), pp. 2775–2798; Aug. 2019.

2019
37

E. Otárola, A. Salgado

The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing

Journal of Mathematical Analysis and Applications; Vol. 471(1-2), pp. 599-612; Mar. 2019

2019
36

A. Allendes, E. Otarola, A. J. Salgado

A posteriori error estimates for the Stokes problem with singular sources

Computer Methods in Applied Mechanics and Engineering; Vol. 345, pp. 1007 – 1032; Mar. 2019.

2019
35

E. Otarola, T.N.T Quyen

A reaction coefficient identification problem for fractional diffusion

Inverse Problems; Vol. 35(4), pp. 45010; Mar. 2019.

2019
34
A. Allendes, F. Fuica, E. Otárola, D. Quero
An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations

SIAM Journal on Scientific Computing; Vol 41(5), A2967–A2998

2019
33

F. Fuica, E. Otarola, A. J. Salgado

An a posteriori error analysis for an elliptic optimal control problem in measure space

Computers and Mathematics with Applications; Vol. 77(10), pp. 2659 – 2675; May 2019.

2019
32

A. Allendes, F. Fuica, and E. Otarola

Adaptive finite element methods for sparse PDE-constrained optimization

IMA Journal of Numerical Analysis, 2019.

2019
31

E. Otárola, R. Rankin, A. J. Salgado

Maximum-norm a posteriori error estimates for an optimal control problem

Computational Optimization and Applications; Vol. 73(3), pp. 997 – 1017; Jul. 2019.

2019
30

A. Allendes, E. Otárola, R. Rankin

A posteriori error estimators for stabilized finite element approximations of an optimal control problem

Computer Methods in Applied Mechanics and Engineering, Vol. 340, pp. 147–177; Oct. 2018

2018
29

H. Antil, E. Otárola, A. Salgado

Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects

Journal of Scientific Computing, Vol. 77(1), pp. 204–224; Oct. 2018

2018
28

E. Otárola, H. Antil

An a posteriori error analysis for an optimal control problem involving the fractional Laplacian

IMA Journal of Numerical Analysis; Vol. 38, pp. 198-226; Jan. 2018

2018
27

A. Allendes, E. Otárola, R. Rankin, A. Salgado

An a posteriori error analysis for an optimal control problem with point sources

ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 52 (5), pp. 1617-1650; Nov. 2018

2018
26

A.J. Salgado, E. Otárola

Sparse Optimal Control for Fractional Diffusion

Computational Methods in Applied Mathematics; Vol. 18(1), pp. 95-110; 2018

2018
25

E. Otárola, A.J. Salgado

Optimization of a Fractional Differential Equation

The IMA Volumes in Mathematics and its Applications, 2018

2018
24

E. Otárola, A. J. Salgado

Regularity of solutions to space–time fractional wave equations: A PDE approach

Fractional Calculus and Applied Analysis, Vol. 21(5), pp. 1262-1293, Oct. 2018.

2018
23

A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, A. J. Salgado

Numerical methods for fractional diffusion

Computing and Visualization in Science; Vol. 19(5-6), pp. 19-46; Dec. 2018.

2018
22

H. Antil, E. Otárola, A. Salgado

Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems

IMA Journal of Numerical Analysis, Vol. 38(2), pp. 852–883; May 2018

2018
21

A. Allendes, E. Otárola, R. Rankin

A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations

SIAM Journal on Scientific Computing, Vol. 40(4), pp. A2200–A2233; Jul. 2018

2018
20

E. Otárola

A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains

ESAIM: Mathematical Modelling and Numerical Analysis; Vol. 51(4), pp. 1473-1500; Jul-Aug. 2017

2017
19

E. Otárola, A. Allendes, R. Rankin, A.J. Salgado

Adaptive finite element methods for an optimal control problem involving Dirac measures

Numerische Mathematik; Vol. 137(1), pp. 159-197; Sep. 2017

2017
18

Alejandro Allendes, Enrique Otarola, Erwin Hernández

A robust numerical method for a control problem of singularly perturbed equations

Computer and Mathematics with Applications. An International Journal, Vol. 72, No. 4, pp: 974–991, 2016

2016
17

R.H. Nochetto, E. Otárola, A.J. Salgado,

Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

Numerische Mathematik, 132(1), 85-130, 2016.

2016
16

H. Antil, E. Otárola, , A.J. Salgado

A Space-Time Fractional Optimal Control Problem: Analysis and Discretization

SIAM Journal on Control and Optimization; Vol. 54(3), pp. 1295-1328; 2016

2016
15

R.H. Nochetto , E. Otárola, A.J. Salgado

A PDE Approach to Space-Time Fractional Parabolic Problems

SIAM Journal on Numerical Analysis; Vol. 54(2), pp. 848-873; Mar. 29, 2016

2016
14

E. Otárola, A.J. Salgado

Finite Element Approximation of the Parabolic Fractional Obstacle Problem

SIAM Journal on Numerical Analysis; Vol. 54(4), pp. 2619-2639; 2016.

2016
13

L. Chen, R.H. Nochetto, E. Otárola, A.J. Salgado

Multilevel methods for nonuniformly elliptic operators and fractional diffusion

Mathematics of Computation; Vol. 85(302), pp. 2583-2607; Nov. 2016

2016
12

R.H. Nochetto, E. Otárola, A.J. Salgado

A PDE approach to fractional diffusion in general domains: a priori error analysis

Foundations of Computational Mathematics, 15(3), 733-791, 2015.

2015
11

R.H. Nochetto, E. Otárola, A.J. Salgado

A PDE approach to fractional diffusion: a posteriori error analysis

Journal of Computational Physics, 293, 339-358, 2015.

2015
10

R.H. Nochetto, E. Otárola, A.J. Salgado

Convergence rates for the classical, thin, and fractional elliptic obstacle problems

Philosophical Transactions of the Royal Society of London A, 373(2050), 2015.

2015
9

R.H. Nochetto, E. Otárola, A.J. Salgado

A PDE approach to numerical fractional diffusion

Proceedings of the International Congress on Industrial and Applied Mathematics, 2015

2015
8

H. Antil, E. Otárola

A Fem for an Optimal Control Problem of Fractional Powers of Elliptic Operators

SIAM Journal on Control and Optimization; Vol. 53(6), pp. 3432-3456; 2015

2015
7

R. H. Nochetto, E. Otarola, and A. J. Salgado

Convergence rates for the obstacle problem: classical, thin and fractional

Philosophical Transactions of the Royal Society A 373(2050), 2015.

2015
6

D. Kalise, E. Hernández, E. Otárola,

A locking-free scheme for the LQR control of a Timoshenko beam

Journal of Computational and Applied Mathematics, 235(5), 1383-1393, 2011

2011
5

E. Hernández, E. Otárola

A Superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem,

ZAMM, 91(4), 288-299, 2011.

2011
4

E. Hernández, D. Kalise, E. Otárola

Numerical Approximation of the LQR problem in a strongly damped wave equation

Computational Optimization and Applications, 47(1), 161-178, 2010

2010
3

E. Hernández, E. Otárola, R. Rodríguez, F. Sanhueza

Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry

IMA Journal of Numerical Analysis, 29, 180-207, 2009.

2009
2

E. Hernández, E. Otárola

A locking-free FEM in active vibration control of a Timoshenko beam

SIAM Journal on Numerical Analysis, 47(4), 2432-2454, 2009

2009
1

E. Hernández, E. Otárola, R. Rodríguez and F. Sanhueza

Finite element approximation of the vibration problem for a timoshenko curved rod

Revista de la Unión Matemática Argentina, 49(1), 15-28, 2008.

2008

Proyectos Vigentes

Programa Nombre Proyecto Periodo
FONDECYT INICIACIÓN 11180193 Numerical analysis of problems involving fractional PDEs and nonsmooth solutions 2018 - 2021